Zeroth-order general Randić index of trees with given distance k-domination number

Autor: Tomas Vetrik, Mesfin Masre, Selvaraj Balachandran
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Electronic Journal of Graph Theory and Applications, Vol 10, Iss 1 (2022)
Druh dokumentu: article
ISSN: 2338-2287
DOI: 10.5614/ejgta.2022.10.1.17
Popis: The zeroth-order general Randić index of a graph G is defined as Ra(G)=∑v ∈ V(G)dGa(v), where a ∈ ℝ, V(G) is the vertex set of G and dG(v) is the degree of a vertex v in G. We obtain bounds on the zeroth-order general Randić index for trees of given order and distance k-domination number, where k ≥ 1. Lower bounds are given for 0 a and upper bounds are given for a and a > 1. All the extremal graphs are presented which means that our bounds are the best possible.
Databáze: Directory of Open Access Journals