Autor: |
Tomas Vetrik, Mesfin Masre, Selvaraj Balachandran |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Electronic Journal of Graph Theory and Applications, Vol 10, Iss 1 (2022) |
Druh dokumentu: |
article |
ISSN: |
2338-2287 |
DOI: |
10.5614/ejgta.2022.10.1.17 |
Popis: |
The zeroth-order general Randić index of a graph G is defined as Ra(G)=∑v ∈ V(G)dGa(v), where a ∈ ℝ, V(G) is the vertex set of G and dG(v) is the degree of a vertex v in G. We obtain bounds on the zeroth-order general Randić index for trees of given order and distance k-domination number, where k ≥ 1. Lower bounds are given for 0 a and upper bounds are given for a and a > 1. All the extremal graphs are presented which means that our bounds are the best possible. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|