A Facile One-Pot Synthesis of Water-Soluble, Patchy Fe3O4-Au Nanoparticles for Application in Radiation Therapy

Autor: Stefanie Klein, Jakob Hübner, Christina Menter, Luitpold V. R. Distel, Winfried Neuhuber, Carola Kryschi
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Applied Sciences, Vol 9, Iss 1, p 15 (2018)
Druh dokumentu: article
ISSN: 2076-3417
DOI: 10.3390/app9010015
Popis: A facile one-pot synthesis route for the preparation of water-soluble, biocompatible patchy Fe3O4-Au nanoparticles (Fe3O4-Au pNPs) was developed. Biocompatibility was attained through surface functionalization with 1-methyl-3-(dodecylphosphonic acid) imidazolium bromide. The morphology, composition, crystal structure and magnetic properties of the Fe3O4-Au pNPs were investigated by conducting experiments with transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction and superconducting quantum interference device, respectively. Internalization of the Fe3O4-Au pNPs by MCF-7 cells occurred via endocytosis. The performance of the Fe3O4-Au pNPs as X-ray radiosensitizer in tumor cells was compared with that of gold nanocluster and Fe3O4 NPs. For this reason, MCF-7, A549 and MCF-10A cells were loaded with the respective kind of nanoparticles and treated with X-rays at doses of 1, 2 or 3 Gy. The nanoparticle-induced changes of the concentration of the reactive oxygen species (ROS) were detected using specific assays, and the cell survival under X-ray exposure was assessed employing the clonogenic assay. In comparison with the gold nanocluster and Fe3O4 NPs, the Fe3O4-Au pNPs exhibited the highest catalytic capacity for ROS generation in MCF-7 and A549 cells, whereas in the X-ray-induced ROS formation in healthy MCF-10A cells was hardly enhanced by the Fe3O4 NPs and Fe3O4-Au pNPs. Moreover, the excellent performance of Fe3O4-Au pNPs as X-ray radiosensitizers was verified by the quickly decaying radiation dose survival curve of the nanoparticle-loaded MCF-7 and A549 cells and corroborated by the small values of the associated dose-modifying factors.
Databáze: Directory of Open Access Journals