Autor: |
Arkady S. Abdurashitov, Pavel I. Proshin, Gleb B. Sukhorukov |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Nanomaterials, Vol 13, Iss 22, p 2976 (2023) |
Druh dokumentu: |
article |
ISSN: |
2079-4991 |
DOI: |
10.3390/nano13222976 |
Popis: |
Complex-structured polymeric microparticles hold significant promise as an advance in next-generation medicine mostly due to demand from developing targeted drug delivery. However, the conventional methods for producing these microparticles of defined size, shape, and sophisticated composition often face challenges in scalability, reliance on specialized components such as micro-patterned templates, or limited control over particle size distribution and cargo (functional payload) release kinetics. In this study, we introduce a novel and reliably scalable approach for manufacturing microparticles of defined structures and sizes with variable parameters. The concept behind this method involves the deposition of a specific number of polymer layers on a substrate with low surface energy. Each layer can serve as either the carrier for cargo or a programmable shell-former with predefined permeability. Subsequently, this layered structure is precisely cut into desired-size blanks (particle precursors) using a laser. The manufacturing process is completed by applying heat to the substrate, which results in sealing the edges of the blanks. The combination of the high surface tension of the molten polymer and the low surface energy of the substrate enables the formation of discrete particles, each possessing semi-spherical or other designed geometries determined by their internal composition. Such anisotropic microparticles are envisaged to have versatile applications. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|