Autonomous Thermosiphon System of Passive Residual Heat Removal from the Primary Circuit of the Reactor Plant: Features of Operation, Characteristics and Basic Advantages
Autor: | I. I Sviridenko, D. V. Shevelyov |
---|---|
Jazyk: | ruština |
Rok vydání: | 2023 |
Předmět: | |
Zdroj: | Izvestiâ Vysših Učebnyh Zavedenij i Ènergetičeskih ob Edinennij SNG. Ènergetika, Vol 66, Iss 5, Pp 433-450 (2023) |
Druh dokumentu: | article |
ISSN: | 1029-7448 2414-0341 |
DOI: | 10.21122/1029-7448-2023-66-5-433-450 |
Popis: | An autonomous system of passive removal of residual heat (PRRHS) of a reactor installation with VVER designed to ensure the safety of nuclear power plants in an accident with complete long-term blackout is considered. The system provides for the removal of heat directly from the first circuit of the reactor plant (PRRHS R). In order to increase the reliability and safety of the emergency heat sink, heat exchange equipment based on closed-type evaporation and condensation devices – two-phase thermosyphons – has been used in the system. The main feature of such heat exchangers is that their thermosiphon assemblies structurally separate the primary circuit and the auxiliary circuit of the PRRHS, which is removed outside the reactor compartment, and provide safe and efficient heat removal, reduce the risk of radioactive contamination spreading beyond safety barriers. Such autonomous passive systems will provide effective heat removal directly from the primary circuit by changing the chain of successive heat transfer sites from nuclear fuel to the final absorber and excluding from it such elements, as for example steam generators, the condition and operability of which in the emergency process of heat removal have a major impact on the safety of the reactor core. The article presents a diagram of an autonomous heat sink system; also, a description of its operation is given. The main characteristics of the course of the emergency process of removal of residual heat by the autonomous thermosiphon PRRHS R obtained by computational modeling have been considered. The advantages of an autonomous thermosiphon passive system in comparison with a passive heat removal system of a reactor installation with VVER through the second circuit are analyzed. The obtained results are proposed to solve the problems of diversification of passive safety systems of evolutionary reactor plants of nuclear power plants with VVER type reactors. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |