Autor: |
Arnas Nakrosis, Agne Paulauskaite-Taraseviciene, Vidas Raudonis, Ignas Narusis, Valentas Gruzauskas, Romas Gruzauskas, Ingrida Lagzdinyte-Budnike |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Animals, Vol 13, Iss 19, p 3041 (2023) |
Druh dokumentu: |
article |
ISSN: |
2076-2615 |
DOI: |
10.3390/ani13193041 |
Popis: |
The use of artificial intelligence techniques with advanced computer vision techniques offers great potential for non-invasive health assessments in the poultry industry. Evaluating the condition of poultry by monitoring their droppings can be highly valuable as significant changes in consistency and color can be indicators of serious and infectious diseases. While most studies have prioritized the classification of droppings into two categories (normal and abnormal), with some relevant studies dealing with up to five categories, this investigation goes a step further by employing image processing algorithms to categorize droppings into six classes, based on visual information indicating some level of abnormality. To ensure a diverse dataset, data were collected in three different poultry farms in Lithuania by capturing droppings on different types of litter. With the implementation of deep learning, the object detection rate reached 92.41% accuracy. A range of machine learning algorithms, including different deep learning architectures, has been explored and, based on the obtained results, we have proposed a comprehensive solution by combining different models for segmentation and classification purposes. The results revealed that the segmentation task achieved the highest accuracy of 0.88 in terms of the Dice coefficient employing the K-means algorithm. Meanwhile, YOLOv5 demonstrated the highest classification accuracy, achieving an ACC of 91.78%. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|