Supervised Method of Landslide Inventory Using Panchromatic SPOT5 Images and Application to the Earthquake-Triggered Landslides of Pisco (Peru, 2007, Mw8.0)

Autor: Pascal Lacroix, Bilberto Zavala, Etienne Berthier, Laurence Audin
Jazyk: angličtina
Rok vydání: 2013
Předmět:
Zdroj: Remote Sensing, Vol 5, Iss 6, Pp 2590-2616 (2013)
Druh dokumentu: article
ISSN: 2072-4292
DOI: 10.3390/rs5062590
Popis: Earthquake is one of the dominant triggering factors of landslides. Given the wide areas covered by mega earthquake-triggered landslides, their inventory requires development of automatic or semi-automatic methods applied to satellite imagery. A detection method is here proposed for this purpose, to fit with simple datasets; SPOT5 panchromatic images of 5 m resolution coupled with a freely and globally available DEM. The method takes advantage of multi-temporal images to detect changes based on radiometric variations after precise coregistration/orthorectification. Removal of false alarms is then undertaken using shape, orientation and radiometric properties of connected pixels defining objects. 80% of the landslides and 93% of the landslide area are detected indicating small omission errors but 50% of false alarms remain. They are removed using expert based analysis of the inventory. The method is applied to realize the first comprehensive inventory of landslides triggered by the Pisco earthquake (Peru, 15/08/2007, Mw 8.0) over an area of 27,000 km2. 866 landslides larger than 100 m2 are detected covering a total area of 1.29 km2. The area/number distribution follows a power-law with an exponent of 1.63, showing a very particular regime of triggering in this arid environment compared to other areas in the world. This specific triggering can be explained by the little soil cover in the coastal and forearc regions of Peru. Analysis of this database finally shows a major control of the topography (both orientation and inclination) on the repartition of the Pisco-triggered landslides.
Databáze: Directory of Open Access Journals