Magic Square and Arrangement of Consecutive Integers That Avoids k-Term Arithmetic Progressions
Autor: | Kai An Sim, Kok Bin Wong |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Mathematics, Vol 9, Iss 18, p 2259 (2021) |
Druh dokumentu: | article |
ISSN: | 2227-7390 24440787 |
DOI: | 10.3390/math9182259 |
Popis: | In 1977, Davis et al. proposed a method to generate an arrangement of [n]={1,2,…,n} that avoids three-term monotone arithmetic progressions. Consequently, this arrangement avoids k-term monotone arithmetic progressions in [n] for k≥3. Hence, we are interested in finding an arrangement of [n] that avoids k-term monotone arithmetic progression, but allows k−1-term monotone arithmetic progression. In this paper, we propose a method to rearrange the rows of a magic square of order 2k−3 and show that this arrangement does not contain a k-term monotone arithmetic progression. Consequently, we show that there exists an arrangement of n consecutive integers such that it does not contain a k-term monotone arithmetic progression, but it contains a k−1-term monotone arithmetic progression. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |