Image Thresholding Improved by Global Optimization Methods
Autor: | Felipe Balabanian, Eduardo Sant'Ana da Silva, Helio Pedrini |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: | |
Zdroj: | Applied Artificial Intelligence, Vol 31, Iss 3, Pp 197-208 (2017) |
Druh dokumentu: | article |
ISSN: | 0883-9514 1087-6545 08839514 |
DOI: | 10.1080/08839514.2017.1300050 |
Popis: | Image thresholding is a common segmentation technique with applications in various fields, such as computer vision, pattern recognition, microscopy, remote sensing, and biology. The selection of threshold values for segmenting pixels into foreground and background regions is usually based on subjective assumptions or user judgments under empirical rules or manually determined. This work describes and evaluates six effective threshold selection strategies for image segmentation based on global optimization methods: genetic algorithms, particle swarm, simulated annealing, and pattern search. Experiments are conducted on several images to demonstrate the effectiveness of the proposed methodology. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |