Image Thresholding Improved by Global Optimization Methods

Autor: Felipe Balabanian, Eduardo Sant'Ana da Silva, Helio Pedrini
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Zdroj: Applied Artificial Intelligence, Vol 31, Iss 3, Pp 197-208 (2017)
Druh dokumentu: article
ISSN: 0883-9514
1087-6545
08839514
DOI: 10.1080/08839514.2017.1300050
Popis: Image thresholding is a common segmentation technique with applications in various fields, such as computer vision, pattern recognition, microscopy, remote sensing, and biology. The selection of threshold values for segmenting pixels into foreground and background regions is usually based on subjective assumptions or user judgments under empirical rules or manually determined. This work describes and evaluates six effective threshold selection strategies for image segmentation based on global optimization methods: genetic algorithms, particle swarm, simulated annealing, and pattern search. Experiments are conducted on several images to demonstrate the effectiveness of the proposed methodology.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje