RS-LLaVA: A Large Vision-Language Model for Joint Captioning and Question Answering in Remote Sensing Imagery
Autor: | Yakoub Bazi, Laila Bashmal, Mohamad Mahmoud Al Rahhal, Riccardo Ricci, Farid Melgani |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2024 |
Předmět: | |
Zdroj: | Remote Sensing, Vol 16, Iss 9, p 1477 (2024) |
Druh dokumentu: | article |
ISSN: | 16091477 2072-4292 |
DOI: | 10.3390/rs16091477 |
Popis: | In this paper, we delve into the innovative application of large language models (LLMs) and their extension, large vision-language models (LVLMs), in the field of remote sensing (RS) image analysis. We particularly emphasize their multi-tasking potential with a focus on image captioning and visual question answering (VQA). In particular, we introduce an improved version of the Large Language and Vision Assistant Model (LLaVA), specifically adapted for RS imagery through a low-rank adaptation approach. To evaluate the model performance, we create the RS-instructions dataset, a comprehensive benchmark dataset that integrates four diverse single-task datasets related to captioning and VQA. The experimental results confirm the model’s effectiveness, marking a step forward toward the development of efficient multi-task models for RS image analysis. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |