Autor: |
Bijen Khagi, Goo-Rak Kwon |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Scientific Reports, Vol 12, Iss 1, Pp 1-14 (2022) |
Druh dokumentu: |
article |
ISSN: |
2045-2322 |
DOI: |
10.1038/s41598-022-19020-y |
Popis: |
Abstract Activation functions in the neural network are responsible for ‘firing’ the nodes in it. In a deep neural network they ‘activate’ the features to reduce feature redundancy and learn the complex pattern by adding non-linearity in the network to learn task-specific goals. In this paper, we propose a simple and interesting activation function based on the combination of scaled gamma correction and hyperbolic tangent function, which we call Scaled Gamma Tanh (SGT) activation. The proposed activation function is applied in two steps, first is the calculation of gamma version as y = f(x) = ax α for x |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|