Unsupervised logic mining with a binary clonal selection algorithm in multi-unit discrete Hopfield neural networks via weighted systematic 2 satisfiability

Autor: Nurul Atiqah Romli, Nur Fariha Syaqina Zulkepli, Mohd Shareduwan Mohd Kasihmuddin, Nur Ezlin Zamri, Nur 'Afifah Rusdi, Gaeithry Manoharam, Mohd. Asyraf Mansor, Siti Zulaikha Mohd Jamaludin, Amierah Abdul Malik
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: AIMS Mathematics, Vol 9, Iss 8, Pp 22321-22365 (2024)
Druh dokumentu: article
ISSN: 2473-6988
DOI: 10.3934/math.20241087?viewType=HTML
Popis: Evaluating behavioral patterns through logic mining within a given dataset has become a primary focus in current research. Unfortunately, there are several weaknesses in the research regarding the logic mining models, including an uncertainty of the attribute selected in the model, random distribution of negative literals in a logical structure, non-optimal computation of the best logic, and the generation of overfitting solutions. Motivated by these limitations, a novel logic mining model incorporating the mechanism to control the negative literal in the systematic Satisfiability, namely Weighted Systematic 2 Satisfiability in Discrete Hopfield Neural Network, is proposed as a logical structure to represent the behavior of the dataset. For the proposed logic mining models, we used ratio of r to control the distribution of the negative literals in the logical structures to prevent overfitting solutions and optimize synaptic weight values. A new computational approach of the best logic by considering both true and false classification values of the learning system was applied in this work to preserve the significant behavior of the dataset. Additionally, unsupervised learning techniques such as Topological Data Analysis were proposed to ensure the reliability of the selected attributes in the model. The comparative experiments of the logic mining models by utilizing 20 repository real-life datasets were conducted from repositories to assess their efficiency. Following the results, the proposed logic mining model dominated in all the metrics for the average rank. The average ranks for each metric were Accuracy (7.95), Sensitivity (7.55), Specificity (7.93), Negative Predictive Value (7.50), and Mathews Correlation Coefficient (7.85). Numerical results and in-depth analysis demonstrated that the proposed logic mining model consistently produced optimal induced logic that best represented the real-life dataset for all the performance metrics used in this study.
Databáze: Directory of Open Access Journals