Komparasi Kinerja Algoritma C4.5, Random Forest, dan Gradient Boosting untuk Klasifikasi Komoditas

Autor: Edi Ismanto, Melly Novalia
Jazyk: indonéština
Rok vydání: 2021
Předmět:
Zdroj: Techno.Com, Vol 20, Iss 3, Pp 400-410 (2021)
Druh dokumentu: article
ISSN: 2356-2579
DOI: 10.33633/tc.v20i3.4576
Popis: Penentuan komoditas unggulan pada suatu daerah merupakan hal yang sangat penting untuk dilakukan, salah satunya di Provinsi Riau. Memahami mengenai prioritas perencanaan pengembangan wilayah yang diarahkan pada pengembangan komoditas unggulan. Sejauh ini Provinsi Riau memiliki potensi komoditas disektor perkebunan yang sangat menjajikan, data yang ada sebelumnya banyak digunakan sebagai laporan, dalam bentuk data excel. Data komoditas bisa digali dengan teknik data mining untuk mendapatkan pola klasifikasi, sehingga lebih memudahkan Pemerintah Provinsi Riau dalam mendapatkan informasi komoditas unggulannya. Pada penelitian ini, dilakukan pengujian kinerja algoritma klasifikasi yang banyak digunakan dalam data mining, agar mendapatkan algoritma yang memiliki kinerja paling baik untuk klasifikasi data komoditas. Beberapa penelitian mengatakan algoritma klasifikasi C4.5 memiliki kinerja kurang baik dibandingkan dengan algoritma yang lain seperti random forest, dan gradient boosting. Dalam penelitian ini dilakukan perbandingan antara algoritma C4.5, random forest, dan gradient boosting, untuk mengukur kinerja terbaik dalam melakukan klasifikasi data komoditas. Data yang digunakan dalam penelitian ini yaitu data komoditas perkebunan Provinsi Riau pada tahun 2019. Hasil dari penelitian ini, algoritma yang memiliki kinerja terbaik untuk klasifikasi adalah algoritma random forest dengan syarat menggunakan shuffle sampling. Dan mayoritas linear sampling menghasilkan kinerja kurang baik. Sedangkan shuffle sampling memiliki kinerja sangat baik untuk algoritma berbasis tree.
Databáze: Directory of Open Access Journals