Autor: |
Yujing Sheng, Baomin Chen, Liang Liu, Suwen Li, Shilu Huang, Shan Cheng, Zhe Li, Yifang Ping, Zhigang Gong, Jun Dong |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Heliyon, Vol 9, Iss 8, Pp e19034- (2023) |
Druh dokumentu: |
article |
ISSN: |
2405-8440 |
DOI: |
10.1016/j.heliyon.2023.e19034 |
Popis: |
Metabolism remodelling of macrophages in the glioblastoma microenvironment contributes to immunotherapeutic resistance. However, glioma stem cell (GSC)-initiated lipid metabolism remodelling of transformed macrophages (tMΦs) and its effect on the glioblastoma microenvironment have not been fully elucidated. Total cholesterol (TC) levels and lipid metabolism enzyme expression in macrophages in the GSC microenvironment were evaluated and found that the TC levels of tMΦs were increased, and the expression of the lipid metabolism enzymes calmodulin (CaM), apolipoprotein E (ApoE), and liver X receptor (LXR) was upregulated. Knockdown of HOXC-AS3 led to a decrease in the proliferation, colony formation, invasiveness, and tumorigenicity of tMΦs. Downregulation of CaM resulted in a decline in TC levels. HOXC-AS3 overexpression led to increases in both CaM expression levels and TC levels in tMΦs. RNA pull down and mass spectrometry experiments were conducted and heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) was screened as the HOXC-AS3 binding proteins related to lipid metabolism. RIP and RNA pull down assays verified that HOXC-AS3 can form a complex with hnRNPA1. Knockdown of hnRNPA1 downregulated CaM expression; however, downregulation of HOXC-AS3 did not affect hnRNPA1 expression.TMΦs underwent lipid metabolism remodelling induced by GSC via the HOXC-AS3/hnRNPA1/CaM pathway, which enhanced the protumor activities of tMΦs, and may serve as a potential metabolic intervening target to improve glioblastoma immunotherapy. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|