Autor: |
Yin, Zhijun, Fabbri, Daniel, Rosenbloom, S Trent, Malin, Bradley |
Jazyk: |
angličtina |
Rok vydání: |
2015 |
Předmět: |
|
Zdroj: |
Journal of Medical Internet Research, Vol 17, Iss 6, p e138 (2015) |
Druh dokumentu: |
article |
ISSN: |
1438-8871 |
DOI: |
10.2196/jmir.4305 |
Popis: |
BackgroundBiomedical research has traditionally been conducted via surveys and the analysis of medical records. However, these resources are limited in their content, such that non-traditional domains (eg, online forums and social media) have an opportunity to supplement the view of an individual’s health. ObjectiveThe objective of this study was to develop a scalable framework to detect personal health status mentions on Twitter and assess the extent to which such information is disclosed. MethodsWe collected more than 250 million tweets via the Twitter streaming API over a 2-month period in 2014. The corpus was filtered down to approximately 250,000 tweets, stratified across 34 high-impact health issues, based on guidance from the Medical Expenditure Panel Survey. We created a labeled corpus of several thousand tweets via a survey, administered over Amazon Mechanical Turk, that documents when terms correspond to mentions of personal health issues or an alternative (eg, a metaphor). We engineered a scalable classifier for personal health mentions via feature selection and assessed its potential over the health issues. We further investigated the utility of the tweets by determining the extent to which Twitter users disclose personal health status. ResultsOur investigation yielded several notable findings. First, we find that tweets from a small subset of the health issues can train a scalable classifier to detect health mentions. Specifically, training on 2000 tweets from four health issues (cancer, depression, hypertension, and leukemia) yielded a classifier with precision of 0.77 on all 34 health issues. Second, Twitter users disclosed personal health status for all health issues. Notably, personal health status was disclosed over 50% of the time for 11 out of 34 (33%) investigated health issues. Third, the disclosure rate was dependent on the health issue in a statistically significant manner (P |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|