SARS-CoV-2 proteases PLpro and 3CLpro cleave IRF3 and critical modulators of inflammatory pathways (NLRP12 and TAB1): implications for disease presentation across species
Autor: | Mehdi Moustaqil, Emma Ollivier, Hsin-Ping Chiu, Sarah Van Tol, Paulina Rudolffi-Soto, Christian Stevens, Akshay Bhumkar, Dominic J. B. Hunter, Alexander N. Freiberg, David Jacques, Benhur Lee, Emma Sierecki, Yann Gambin |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Emerging Microbes and Infections, Vol 10, Iss 1, Pp 178-195 (2021) |
Druh dokumentu: | article |
ISSN: | 22221751 2222-1751 |
DOI: | 10.1080/22221751.2020.1870414 |
Popis: | The genome of SARS-CoV-2 encodes two viral proteases (NSP3/papain-like protease and NSP5/3C-like protease) that are responsible for cleaving viral polyproteins during replication. Here, we discovered new functions of the NSP3 and NSP5 proteases of SARS-CoV-2, demonstrating that they could directly cleave proteins involved in the host innate immune response. We identified 3 proteins that were specifically and selectively cleaved by NSP3 or NSP5: IRF-3, and NLRP12 and TAB1, respectively. Direct cleavage of IRF3 by NSP3 could explain the blunted Type-I IFN response seen during SARS-CoV-2 infections while NSP5 mediated cleavage of NLRP12 and TAB1 point to a molecular mechanism for enhanced production of cytokines and inflammatory response observed in COVID-19 patients. We demonstrate that in the mouse NLRP12 protein, one of the recognition site is not cleaved in our in-vitro assay. We pushed this comparative alignment of IRF-3 and NLRP12 homologs and show that the lack or presence of cognate cleavage motifs in IRF-3 and NLRP12 could contribute to the presentation of disease in cats and tigers, for example. Our findings provide an explanatory framework for indepth studies into the pathophysiology of COVID-19. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |