Popis: |
Background: The technological revolution has allowed users to exchange data and information in various fields, and this is one of the most prevalent uses of computer technologies. However, in a world where third parties are capable of collecting, stealing, and destroying information without authorization, cryptography remains the primary tool that assists users in keeping their information secure using various techniques. Blowfish is an encryption process that is modest, protected, and proficient, with the size of the message and the key size affecting its performance. Aim: the goal of this study is to design a modified Blowfish algorithm by changing the structure of the F function to encrypt and decrypt video data. After which, the performance of the normal and modified Blowfish algorithm will be obtained in terms of time complexity and the avalanche effect. Methods: To compare the encryption time and security, the modified Blowfish algorithm will use only two S-boxes in the F function instead of the four used in Blowfish. Encryption and decryption times were calculated to compare Blowfish to the modified Blowfish algorithm, with the findings indicating that the modified Blowfish algorithm performs better. Results: The Avalanche Effect results reveal that normal Blowfish has a higher security level for all categories of video file size than the modified Blowfish algorithm, with 50.7176% for normal Blowfish and 43.3398% for the modified Blowfish algorithm of 187 kb; hence, it is preferable to secure data and programs that demand a high level of security with Blowfish. Conclusions: From the experimental results, the modified Blowfish algorithm performs faster than normal Blowfish in terms of time complexity with an average execution time of 250.0 ms for normal Blowfish and 248.4 ms for the modified Blowfish algorithm. Therefore, it can be concluded that the modified Blowfish algorithm using the F-structure is time-efficient while normal Blowfish is better in terms of security. |