On the solvability of an initial-boundary value problem for a non-linear fractional diffusion equation

Autor: Özge Arıbaş, İsmet Gölgeleyen, Mustafa Yıldız
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: AIMS Mathematics, Vol 8, Iss 3, Pp 5432-5444 (2023)
Druh dokumentu: article
ISSN: 2473-6988
DOI: 10.3934/math.2023273?viewType=HTML
Popis: In this paper, we consider an initial-boundary value problem for a non-linear fractional diffusion equation on a bounded domain. The fractional derivative is defined in Caputo's sense with respect to the time variable and represents the case of sub-diffusion. Also, the equation involves a second order symmetric uniformly elliptic operator with time-independent coefficients. These initial-boundary value problems arise in applied sciences such as mathematical physics, fluid mechanics, mathematical biology and engineering. By using eigenfunction expansions and Banach fixed point theorem, we establish the existence, uniqueness and regularity properties of the solution of the problem.
Databáze: Directory of Open Access Journals