Urban Multi-Source Spatio-Temporal Data Analysis Aware Knowledge Graph Embedding

Autor: Ling Zhao, Hanhan Deng, Linyao Qiu, Sumin Li, Zhixiang Hou, Hai Sun, Yun Chen
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Symmetry, Vol 12, Iss 2, p 199 (2020)
Druh dokumentu: article
ISSN: 2073-8994
DOI: 10.3390/sym12020199
Popis: Multi-source spatio-temporal data analysis is an important task in the development of smart cities. However, traditional data analysis methods cannot adapt to the growth rate of massive multi-source spatio-temporal data and explain the practical significance of results. To explore the network structure and semantic relationships, we propose a general framework for multi-source spatio-temporal data analysis via knowledge graph embedding. The framework extracts low-dimensional feature representation from multi-source spatio-temporal data in a high-dimensional space, and recognizes the network structure and semantic relationships about multi-source spatio-temporal data. Experiment results show that the framework can not only effectively utilize multi-source spatio-temporal data, but also explore the network structure and semantic relationship. Taking real Shanghai datasets as an example, we confirm the validity of the multi-source spatio-temporal data analytical framework based on knowledge graph embedding.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje