Peptide Stapling Improves the Sustainability of a Peptide-Based Chimeric Molecule That Induces Targeted Protein Degradation
Autor: | Hidetomo Yokoo, Nobumichi Ohoka, Mami Takyo, Takahito Ito, Keisuke Tsuchiya, Takashi Kurohara, Kiyoshi Fukuhara, Takao Inoue, Mikihiko Naito, Yosuke Demizu |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | International Journal of Molecular Sciences, Vol 22, Iss 16, p 8772 (2021) |
Druh dokumentu: | article |
ISSN: | 1422-0067 1661-6596 |
DOI: | 10.3390/ijms22168772 |
Popis: | Peptide-based target protein degradation inducers called PROTACs/SNIPERs have low cell penetrability and poor intracellular stability as drawbacks. These shortcomings can be overcome by easily modifying these peptides by conjugation with cell penetrating peptides and side-chain stapling. In this study, we succeeded in developing the stapled peptide stPERML-R7, which is based on the estrogen receptor alpha (ERα)-binding peptide PERML and composed of natural amino acids. stPERML-R7, which includes a hepta-arginine motif and a hydrocarbon stapling moiety, showed increased α-helicity and similar binding affinity toward ERα when compared with those of the parent peptide PERML. Furthermore, we used stPERML-R7 to develop a peptide-based degrader LCL-stPERML-R7 targeting ERα by conjugating stPERML-R7 with a small molecule LCL161 (LCL) that recruits the E3 ligase IAPs to induce proteasomal degradation via ubiquitylation. The chimeric peptide LCL-stPERML-R7 induced sustained degradation of ERα and potently inhibited ERα-mediated transcription more effectively than the unstapled chimera LCL-PERML-R7. These results suggest that a stapled structure is effective in maintaining the intracellular activity of peptide-based degraders. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |