Fast 4D On-the-Fly Tomography for Observation of Advanced Pore Morphology (APM) Foam Elements Subjected to Compressive Loading
Autor: | Michal Vopalensky, Petr Koudelka, Jan Sleichrt, Ivana Kumpova, Matej Borovinsek, Matej Vesenjak, Daniel Kytyr |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
4D CT
microcomputed tomography on-the-fly tomography image quality advanced pore morphology (APM) foam in-situ mechanical testing Technology Electrical engineering. Electronics. Nuclear engineering TK1-9971 Engineering (General). Civil engineering (General) TA1-2040 Microscopy QH201-278.5 Descriptive and experimental mechanics QC120-168.85 |
Zdroj: | Materials, Vol 14, Iss 23, p 7256 (2021) |
Druh dokumentu: | article |
ISSN: | 1996-1944 |
DOI: | 10.3390/ma14237256 |
Popis: | Observation of dynamic testing by means of X-ray computed tomography (CT) and in-situ loading devices has proven its importance in material analysis already, yielding detailed 3D information on the internal structure of the object of interest and its changes during the experiment. However, the acquisition of the tomographic projections is, in general, a time-consuming task. The standard method for such experiments is the time-lapse CT, where the loading is suspended for the CT scan. On the other hand, modern X-ray tubes and detectors allow for shorter exposure times with an acceptable image quality. Consequently, the experiment can be designed in a way so that the mechanical test is running continuously, as well as the rotational platform, and the radiographic projections are taken one after another in a fast, free-running mode. Performing this so-called on-the-fly CT, the time for the experiment can be reduced substantially, compared to the time-lapse CT. In this paper, the advanced pore morphology (APM) foam elements were used as the test objects for in-situ X-ray microtomography experiments, during which series of CT scans were acquired, each with the duration of 12 s. The contrast-to-noise ratio and the full-width-half-maximum parameters are used for the quality assessment of the resultant 3D models. A comparison to the 3D models obtained by time-lapse CT is provided. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |