The new exact solutions for the deterministic and stochastic (2+1)-dimensional equations in natural sciences
Autor: | Mahmoud A. E. Abdelrahman, M. A. Sohaly, Abdulghani Alharbi |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: | |
Zdroj: | Journal of Taibah University for Science, Vol 13, Iss 1, Pp 834-843 (2019) |
Druh dokumentu: | article |
ISSN: | 1658-3655 16583655 |
DOI: | 10.1080/16583655.2019.1644832 |
Popis: | This paper poses the Riccati–Bernoulli sub-ODE method in order to find the exact (random) travelling wave solutions for the (2+1)-dimensional cubic nonlinear Klein–Gordon (cKG) equation and the (2+1)-dimensional nonlinear Zakharov–Kuznetsov modified equal width (ZK-MEW) equation. The obtained travelling wave solutions are expressed by the hyperbolic, trigonometric and rational functions. Indeed, these solutions reflect some interesting physical interpretation for nonlinear phenomena. We discuss our method in deterministic case and in a random case. Additionally, we can show and discuss this method under some random distributions. Finally, some three-dimensional graphics of some solutions have been illustrated. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |