Multimodal deep learning for Alzheimer’s disease dementia assessment

Autor: Shangran Qiu, Matthew I. Miller, Prajakta S. Joshi, Joyce C. Lee, Chonghua Xue, Yunruo Ni, Yuwei Wang, Ileana De Anda-Duran, Phillip H. Hwang, Justin A. Cramer, Brigid C. Dwyer, Honglin Hao, Michelle C. Kaku, Sachin Kedar, Peter H. Lee, Asim Z. Mian, Daniel L. Murman, Sarah O’Shea, Aaron B. Paul, Marie-Helene Saint-Hilaire, E. Alton Sartor, Aneeta R. Saxena, Ludy C. Shih, Juan E. Small, Maximilian J. Smith, Arun Swaminathan, Courtney E. Takahashi, Olga Taraschenko, Hui You, Jing Yuan, Yan Zhou, Shuhan Zhu, Michael L. Alosco, Jesse Mez, Thor D. Stein, Kathleen L. Poston, Rhoda Au, Vijaya B. Kolachalama
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Nature Communications, Vol 13, Iss 1, Pp 1-17 (2022)
Druh dokumentu: article
ISSN: 2041-1723
DOI: 10.1038/s41467-022-31037-5
Popis: Here the authors present a deep learning framework for dementia diagnosis, which can identify persons with normal cognition, mild cognitive impairment, Alzheimer’s disease, and dementia due to other etiologies.
Databáze: Directory of Open Access Journals