Effects of Cu, Zn Doping on the Structural, Electronic, and Optical Properties of α-Ga2O3: First-Principles Calculations
Autor: | Hui Zeng, Meng Wu, Meijuan Cheng, Qiubao Lin |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2023 |
Předmět: |
α-Ga2O3
first-principles doping formation energies electronic structure optical properties Technology Electrical engineering. Electronics. Nuclear engineering TK1-9971 Engineering (General). Civil engineering (General) TA1-2040 Microscopy QH201-278.5 Descriptive and experimental mechanics QC120-168.85 |
Zdroj: | Materials, Vol 16, Iss 15, p 5317 (2023) |
Druh dokumentu: | article |
ISSN: | 1996-1944 |
DOI: | 10.3390/ma16155317 |
Popis: | The intrinsic n-type conduction in Gallium oxides (Ga2O3) seriously hinders its potential optoelectronic applications. Pursuing p-type conductivity is of longstanding research interest for Ga2O3, where the Cu- and Zn-dopants serve as promising candidates in monoclinic β-Ga2O3. However, the theoretical band structure calculations of Cu- and Zn-doped in the allotrope α-Ga2O3 phase are rare, which is of focus in the present study based on first-principles density functional theory calculations with the Perdew–Burke–Ernzerhof functional under the generalized gradient approximation. Our results unfold the predominant Cu1+ and Zn2+ oxidation states as well as the type and locations of impurity bands that promote the p-type conductivity therein. Furthermore, the optical calculations of absorption coefficients demonstrate that foreign Cu and Zn dopants induce the migration of ultraviolet light to the visible–infrared region, which can be associated with the induced impurity 3d orbitals of Cu- and Zn-doped α-Ga2O3 near the Fermi level observed from electronic structure. Our work may provide theoretical guidance for designing p-type conductivity and innovative α-Ga2O3-based optoelectronic devices. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |