A hierarchical approach to removal of unwanted variation for large-scale metabolomics data

Autor: Taiyun Kim, Owen Tang, Stephen T. Vernon, Katharine A. Kott, Yen Chin Koay, John Park, David E. James, Stuart M. Grieve, Terence P. Speed, Pengyi Yang, Gemma A. Figtree, John F. O’Sullivan, Jean Yee Hwa Yang
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Nature Communications, Vol 12, Iss 1, Pp 1-10 (2021)
Druh dokumentu: article
ISSN: 2041-1723
DOI: 10.1038/s41467-021-25210-5
Popis: Mass spectrometry-based metabolomics is a powerful method for profiling large clinical cohorts but batch variations can obscure biologically meaningful differences. Here, the authors develop a computational workflow that removes unwanted data variation while preserving biologically relevant information.
Databáze: Directory of Open Access Journals