Some Sharp Bounds on the Negative Decision Number of Graphs

Autor: Liang Hongyu
Jazyk: angličtina
Rok vydání: 2013
Předmět:
Zdroj: Discussiones Mathematicae Graph Theory, Vol 33, Iss 4, Pp 649-656 (2013)
Druh dokumentu: article
ISSN: 2083-5892
DOI: 10.7151/dmgt.1683
Popis: Let G = (V,E) be a graph. A function f : V → {-1,1} is called a bad function of G if ∑u∈NG(v) f(u) ≤ 1 for all v ∈ V where NG(v) denotes the set of neighbors of v in G. The negative decision number of G, introduced in [12], is the maximum value of ∑v∈V f(v) taken over all bad functions of G. In this paper, we present sharp upper bounds on the negative decision number of a graph in terms of its order, minimum degree, and maximum degree. We also establish a sharp Nordhaus-Gaddum-type inequality for the negative decision number.
Databáze: Directory of Open Access Journals