Autor: |
Bo Dong, Latifur Khan, Madison Smith, Jesus Trevino, Bingxin Zhao, Gabriel L. Hamer, Uriel A. Lopez-Lemus, Aracely Angulo Molina, Jailos Lubinda, Uyen-Sa D. T. Nguyen, Ubydul Haque |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Communications Medicine, Vol 2, Iss 1, Pp 1-11 (2022) |
Druh dokumentu: |
article |
ISSN: |
2730-664X |
DOI: |
10.1038/s43856-022-00192-7 |
Popis: |
Dong et al. analyse Aedes-borne diseases (ABDs) presence, local climate, and socio-demographic factors of 2,469 municipalities in Mexico, and apply machine learning to predict areas most at risk of ABDs clusters. Dengue was most prevalent, and socio-demographic and climatic factors influenced ABDs occurrence in different regions of Mexico. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|