Autor: |
Hongben Liu, Xianghui Song, Bo Liu, Jia Liu, Huan Gao, Yunyi Liang |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Sensors, Vol 23, Iss 2, p 559 (2023) |
Druh dokumentu: |
article |
ISSN: |
1424-8220 |
DOI: |
10.3390/s23020559 |
Popis: |
Freeway-diverging areas are prone to low traffic efficiency, congestion, and frequent accidents. Because of the fluctuation of the surrounding traffic flow distribution, the individual decision-making of vehicles in diverging areas is typically unable to plan a departure trajectory that balances safety and efficiency well. Consequently, it is critical that vehicles in freeway-diverging regions develop a lane-changing driving strategy that strives to improve both the safety and efficiency of divergence areas. For CAV leaving the diverging area, this study suggested a full-time horizon optimum solution. Since it is a dynamic strategy, an MPC system based on rolling time horizon optimization was constructed as the primary algorithm of the strategy. A simulation experiment was created to verify the viability of the proposed methodology based on a mixed-flow environment. The results show that, in comparison with the feasible strategies exiting to off-ramp, the proposed strategy can take over 60% reduction in lost time traveling through a diverging area under the premise of safety and comfort without playing a negative impact on the surrounding traffic flow. Thus, the MPC system designed for the subject vehicle is capable of performing an optimal driving strategy in diverging areas within the full-time and space horizon. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|