Comparison of Echocardiographic and Electrocardiographic Mapping for Cardiac Resynchronisation Therapy Optimisation

Autor: Helder Pereira, Tom A. Jackson, Simon Claridge, Jonathan M. Behar, Cheng Yao, Benjamin Sieniewicz, Justin Gould, Bradley Porter, Baldeep Sidhu, Jaswinder Gill, Steven Niederer, Christopher A. Rinaldi
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Cardiology Research and Practice, Vol 2019 (2019)
Druh dokumentu: article
ISSN: 2090-8016
2090-0597
DOI: 10.1155/2019/4351693
Popis: Study hypothesis. We sought to investigate the association between echocardiographic optimisation and ventricular activation time in cardiac resynchronisation therapy (CRT) patients, obtained through the use of electrocardiographic mapping (ECM). We hypothesised that echocardiographic optimisation of the pacing delay between the atrial and ventricular leads—atrioventricular delay (AVD)—and the delay between ventricular leads—interventricular pacing interval (VVD)—would correlate with reductions in ventricular activation time. Background. Optimisation of AVD and VVD may improve CRT patient outcome. Optimal delays are currently set based on echocardiographic indices; however, acute studies have found that reductions in bulk ventricular activation time correlate with improvements in acute haemodynamic performance. Materials and methods. Twenty-one patients with established CRT criteria were recruited. After implantation, patients underwent echo-guided optimisation of the AVD and VVD. During this procedure, the participants also underwent noninvasive ECM. ECM maps were constructed for each AVD and VVD. ECM maps were analysed offline. Total ventricular activation time (TVaT) and a ventricular activation time index (VaT10-90) were calculated to identify the optimal AVD and VVD timings that gave the minimal TVaT and VaT10-90 values. We correlated cardiac output with these electrical timings. Results. Echocardiographic programming optimisation was not associated with the greatest reductions in biventricular activation time (VaT10-90 and TVaT). Instead, bulk activation times were reduced by a further 20% when optimised with ECM. A significant inverse correlation was identified between reductions in bulk ventricular activation time and improvements in LVOT VTI (p
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje