Positive families and Boolean chains of copies of ultrahomogeneous structures

Autor: Kurilić, Miloš S., Kuzeljević, Boriša
Jazyk: English<br />French
Rok vydání: 2020
Předmět:
Zdroj: Comptes Rendus. Mathématique, Vol 358, Iss 7, Pp 791-796 (2020)
Druh dokumentu: article
ISSN: 1778-3569
DOI: 10.5802/crmath.82
Popis: A family of infinite subsets of a countable set $X$ is called positive iff it is closed under supersets and finite changes and contains a co-infinite set. We show that a countable ultrahomogeneous relational structure ${\mathbb{X}}$ has the strong amalgamation property iff the set ${\mathbb{P}}({\mathbb{X}})\!=\! \lbrace A\!\subset \! X:{\mathbb{A}}\!\cong \!{\mathbb{X}}\rbrace $ contains a positive family. In that case the family of large copies of ${\mathbb{X}}$ (i.e. copies having infinite intersection with each orbit) is the largest positive family in ${\mathbb{P}}({\mathbb{X}})$, and for each ${\mathbb{R}}$-embeddable Boolean linear order ${\mathbb{L}}$ whose minimum is non-isolated there is a maximal chain isomorphic to ${\mathbb{L}}\setminus \lbrace \min {\mathbb{L}}\rbrace $ in $\left\langle {\mathbb{P}}({\mathbb{X}}),\subset \right\rangle $.
Databáze: Directory of Open Access Journals