Existence results of infinitely many weak solutions of a singular subelliptic system on the Heisenberg group
Autor: | Heidari S., Razani A. |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Acta Universitatis Sapientiae: Mathematica, Vol 14, Iss 1, Pp 90-103 (2022) |
Druh dokumentu: | article |
ISSN: | 2066-7752 2022-0006 |
DOI: | 10.2478/ausm-2022-0006 |
Popis: | This article shows the existence and multiplicity of weak solutions for the singular subelliptic system on the Heisenberg group {-Δℍnu+a(ξ)u(|z|4+t2)12=λFu(ξ,u,v)in Ω,-Δℍnv+b(ξ)v(|z|4+t2)12=λFv(ξ,u,v)in Ω,u=v=0on ∂Ω.\left\{ {\matrix{ { - {\Delta _{{\mathbb{H}^n}}}u + a\left( \xi \right){u \over {{{\left( {{{\left| z \right|}^4} + {t^2}} \right)}^{{1 \over 2}}}}} = \lambda {F_u}\left( {\xi ,u,v} \right)} \hfill & {in\,\,\,\Omega ,} \hfill \cr { - {\Delta _{{\mathbb{H}^n}}}v + b\left( \xi \right){v \over {{{\left( {{{\left| z \right|}^4} + {t^2}} \right)}^{{1 \over 2}}}}} = \lambda {F_v}\left( {\xi ,u,v} \right)} \hfill & {in\,\,\,\Omega ,} \hfill \cr {u = v = 0} \hfill & {on\,\,\partial \Omega .} \hfill \cr } } \right. The approach is based on variational methods. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |