Lossless Recompression of Vector Quantization Index Table for Texture Images Based on Adaptive Huffman Coding Through Multi-Type Processing
Autor: | Yijie Lin, Jui-Chuan Liu, Ching-Chun Chang, Chin-Chen Chang |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2024 |
Předmět: | |
Zdroj: | Symmetry, Vol 16, Iss 11, p 1419 (2024) |
Druh dokumentu: | article |
ISSN: | 16111419 2073-8994 |
DOI: | 10.3390/sym16111419 |
Popis: | With the development of the information age, all walks of life are inseparable from the internet. Every day, huge amounts of data are transmitted and stored on the internet. Therefore, to improve transmission efficiency and reduce storage occupancy, compression technology is becoming increasingly important. Based on different application scenarios, it is divided into lossless data compression and lossy data compression, which allows a certain degree of compression. Vector quantization (VQ) is a widely used lossy compression technology. Building upon VQ compression technology, we propose a lossless compression scheme for the VQ index table. In other words, our work aims to recompress VQ compression technology and restore it to the VQ compression carrier without loss. It is worth noting that our method specifically targets texture images. By leveraging the spatial symmetry inherent in these images, our approach generates high-frequency symbols through difference calculations, which facilitates the use of adaptive Huffman coding for efficient compression. Experimental results show that our scheme has better compression performance than other schemes. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |