Bi0.5Na0.5TiO3-Bi3.25La0.75Ti3O12 Lead-Free Thin Films for Energy Storage Applications through Nanodomain Design

Autor: Wenfeng Yue, Tingting Jia, Yanrong Chen, Wenbin Dai, Liang Yu, Yali Cai, Ting Li, Lixia Liu, Quansheng Guo, Shuhui Yu
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Crystals, Vol 12, Iss 11, p 1524 (2022)
Druh dokumentu: article
ISSN: 2073-4352
DOI: 10.3390/cryst12111524
Popis: Dielectric capacitors have received increasing attention due to their high power density. The Bi-based Aurivillius phase compound Bi3.25La0.75Ti3O12 (BLT) is considered a potential material in the field of energy storage due to its excellent ferroelectric properties and good fatigue resistance, and temperature stability. In this paper, 0.4Bi0.5Na0.5TiO3-0.6Bi3.25La0.75Ti3O12 (0.4NBT4BNT-0.6BLT)-thin films were prepared on Pt/Ti/SiO2/Si substrates with the sol-gel method. The addition of BNT destroys the long-range ferroelectric order of BLT and forms nanodomains. By increasing the BNT content, the BLT is transformed from a ferroelectric state to a relaxed state, and its application in the field of energy storage is realized. The recoverable energy density is 42.41 J/cm3, and the recoverable energy storage density is relatively stable in the range of 25–200 °C with good thermal stability. The energy storage efficiency is 75.32% at ~2663 kV/cm. The leakage current density at 300 kV/cm is 1.06 × 10−9 A/cm2.
Databáze: Directory of Open Access Journals