Autor: |
Malte Jacobsen, Till A. Dembek, Athanasios-Panagiotis Ziakos, Rahil Gholamipoor, Guido Kobbe, Markus Kollmann, Christopher Blum, Dirk Müller-Wieland, Andreas Napp, Lutz Heinemann, Nikolas Deubner, Nikolaus Marx, Stefan Isenmann, Melchior Seyfarth |
Jazyk: |
angličtina |
Rok vydání: |
2020 |
Předmět: |
|
Zdroj: |
Sensors, Vol 20, Iss 19, p 5517 (2020) |
Druh dokumentu: |
article |
ISSN: |
1424-8220 |
DOI: |
10.3390/s20195517 |
Popis: |
Atrial fibrillation (AF) is the most common arrhythmia and has a major impact on morbidity and mortality; however, detection of asymptomatic AF is challenging. This study aims to evaluate the sensitivity and specificity of non-invasive AF detection by a medical wearable. In this observational trial, patients with AF admitted to a hospital carried the wearable and an ECG Holter (control) in parallel over a period of 24 h, while not in a physically restricted condition. The wearable with a tight-fit upper armband employs a photoplethysmography technology to determine pulse rates and inter-beat intervals. Different algorithms (including a deep neural network) were applied to five-minute periods photoplethysmography datasets for the detection of AF. A total of 2306 h of parallel recording time could be obtained in 102 patients; 1781 h (77.2%) were automatically interpretable by an algorithm. Sensitivity to detect AF was 95.2% and specificity 92.5% (area under the receiver operating characteristics curve (AUC) 0.97). Usage of deep neural network improved the sensitivity of AF detection by 0.8% (96.0%) and specificity by 6.5% (99.0%) (AUC 0.98). Detection of AF by means of a wearable is feasible in hospitalized but physically active patients. Employing a deep neural network enables reliable and continuous monitoring of AF. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|