A DFT study of the optoelectronic properties of B and Be-doped Graphene
Autor: | L. O. Agbolade, A. K. Y. Dafhalla, D. M. I. Zayan, T. Adam, A. Chik, A. A. Adewale, S. C. B. Gopinath, U. Hashim |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2024 |
Předmět: | |
Zdroj: | Journal of Nigerian Society of Physical Sciences, Vol 6, Iss 1 (2024) |
Druh dokumentu: | article |
ISSN: | 2714-2817 2714-4704 |
DOI: | 10.46481/jnsps.2024.1730 |
Popis: | The electronic and optical properties of Boron (B) and Beryllium (Be)-doped graphene were determined using the ab initio approach based on the generalized gradient approximations within the Full potential linearized Augmented Plane wave formalism (FP-LAPW) formalism. Our findings demonstrated that doping at the edges of graphene is notably stable. In both systems, Be-doped graphene proves more efficient in manipulating the band gap of graphene. Both B and Be induce P-type doping in graphene. B-doped graphene exhibits a negligible magnetic moment of 0.000742, suggesting its suitability for catalytic semiconductor devices. Conversely, Be-doped graphene displays a large magnetic moment of 1.045 µB indicating its potential in spintronics. Additionally, this study elucidates the influence of the dielectric matrices on the optical properties of graphene. These findings underscore a stable and controllable method for modelling graphene at its edges with B and Be atoms, opening new avenues for designing of these devices. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |