Autor: |
Channa Keshava, Suna Nicolai, Suryanarayana V. Vulimiri, Florenz A. Cruz, Narges Ghoreishi, Sven Knueppel, Ariane Lenzner, Patrick Tarnow, Jens T. Vanselow, Brittany Schulz, Amanda Persad, Nancy Baker, Kristina A. Thayer, Antony J. Williams, Ralph Pirow |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Environment International, Vol 176, Iss , Pp 107952- (2023) |
Druh dokumentu: |
article |
ISSN: |
0160-4120 |
DOI: |
10.1016/j.envint.2023.107952 |
Popis: |
Background: Azo dyes are used in textiles and leather clothing. Human exposure can occur from wearing textiles containing azo dyes. Since the body’s enzymes and microbiome can cleave azo dyes, potentially resulting in mutagenic or carcinogenic metabolites, there is also an indirect health concern on the parent compounds. While several hazardous azo dyes are banned, many more are still in use that have not been evaluated systematically for potential health concerns. This systematic evidence map (SEM) aims to compile and categorize the available toxicological evidence on the potential human health risks of a set of 30 market-relevant azo dyes. Methods: Peer-reviewed and gray literature was searched and over 20,000 studies were identified. These were filtered using Sciome Workbench for Interactive computer-Facilitated Text-mining (SWIFT) Review software with evidence stream tags (human, animal, in vitro) yielding 12,800 unique records. SWIFT Active (a machine-learning software) further facilitated title/abstract screening. DistillerSR software was used for additional title/abstract, full-text screening, and data extraction. Results: 187 studies were identified that met populations, exposures, comparators, and outcomes (PECO) criteria. From this pool, 54 human, 78 animal, and 61 genotoxicity studies were extracted into a literature inventory. Toxicological evidence was abundant for three azo dyes (also used as food additives) and sparse for five of the remaining 27 compounds. Complementary search in ECHA’s REACH database for summaries of unpublished study reports revealed evidence for all 30 dyes. The question arose of how this information can be fed into an SEM process. Proper identification of prioritized dyes from various databases (including U.S. EPA’s CompTox Chemicals Dashboard) turned out to be a challenge. Evidence compiled by this SEM project can be evaluated for subsequent use in problem formulation efforts to inform potential regulatory needs and prepare for a more efficient and targeted evaluation in the future for human health assessments. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|