Deep Learning and Simulation for the Estimation of Red Blood Cell Flux With Optical Coherence Tomography

Autor: Sabina Stefan, Anna Kim, Paul J. Marchand, Frederic Lesage, Jonghwan Lee
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Frontiers in Neuroscience, Vol 16 (2022)
Druh dokumentu: article
ISSN: 1662-453X
DOI: 10.3389/fnins.2022.835773
Popis: We present a deep learning and simulation-based method to measure cortical capillary red blood cell (RBC) flux using Optical Coherence Tomography (OCT). This method is more accurate than the traditional peak-counting method and avoids any user parametrization, such as a threshold choice. We used data that was simultaneously acquired using OCT and two-photon microscopy to uncover the distribution of parameters governing the height, width, and inter-peak time of peaks in OCT intensity associated with the passage of RBCs. This allowed us to simulate thousands of time-series examples for different flux values and signal-to-noise ratios, which we then used to train a 1D convolutional neural network (CNN). The trained CNN enabled robust measurement of RBC flux across the entire network of hundreds of capillaries.
Databáze: Directory of Open Access Journals