ARTDET: Machine learning software for automated detection of art deterioration in easel paintings

Autor: Francisco M. Garcia-Moreno, Jesús Cortés Alcaraz, José Manuel del Castillo de la Fuente, Luis Rodrigo Rodríguez-Simón, María Visitación Hurtado-Torres
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: SoftwareX, Vol 28, Iss , Pp 101917- (2024)
Druh dokumentu: article
ISSN: 2352-7110
DOI: 10.1016/j.softx.2024.101917
Popis: The increasing interest in digital preservation of cultural heritage has led to ARTDET, a machine learning software for automated detection of deterioration in easel paintings. This web application uses a pre-trained Mask R-CNN model to detect Lacune (areas of missing paint, resulting in visible support panel) from the loss of the Painting Layer (LPL) and stucco repairs. ARTDET leverages high-resolution images annotated by expert restorers. The software achieved 80.4 % recall for LPL and stucco, with a 99 % confidence score in detected damages. Available as open access resource, ARTDET aids conservators and researchers in preserving invaluable artworks.
Databáze: Directory of Open Access Journals