Isokinetic force-power profile of the shoulder joint in males participating in CrossFit training and competing at different levels

Autor: Maximiliano A. Torres-Banduc, Daniel Jerez-Mayorga, Jason Moran, Justin W.L. Keogh, Rodrigo Ramírez-Campillo
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: PeerJ, Vol 9, p e11643 (2021)
Druh dokumentu: article
ISSN: 2167-8359
DOI: 10.7717/peerj.11643
Popis: Background As participants who engage in CrossFit training and competition perform a large volume of high intensity overhead activities, injuries to the shoulder are one of the most common in this sport. Previous research in other sports has indicated that the isokinetic force power profile of the shoulder joint (IPSJ) rotator muscles may assist in the prediction of shoulder injury. Aim Therefore, the objective of this study was to determine the IPSJ in males engaged in CrossFit training at different competitive levels. Methods In a cross-sectional study design, participants (age, 24.1 ± 2.7 years) classified as ‘beginner’ (n = 6), ‘intermediate’ (n = 7) or ‘advanced’ (n = 9) provided informed consent to participate in this study. The IPSJ assessment involved rotational and diagonal movements, including internal and external shoulder rotator muscles, at both 180°.s−1 and 300°.s−1. The variables analysed were peak torque/body mass (%), mean power (W) and the external/internal peak torque/body mass ratio (%). A Kruskal–Wallis test was used to compare the IPSJ of the three groups, with Dunn’s test used for post-hoc analysis. The alpha level was set at p < 0.05. Results The IPSJ showed greater torque and power values in those who competed at the advanced level as compared to those at a lower competitive level (i.e. intermediate, beginner). This was observed mainly for the internal rotation and internal diagonal movements at both 180°.s−1 and 300°.s−1. However, such differences between competitive levels were, in general, absent for the external rotation and external diagonal movements. Moreover, the participants from the advanced competitive level exhibited an imbalance of peak torque between the muscles responsible for the external–internal rotational and external-internal diagonal movements of the shoulder (i.e. peak torque external/internal ratio
Databáze: Directory of Open Access Journals