Existence and non-existence of positive solution for (p, q)-Laplacian with singular weights

Autor: Abdellah Ahmed Zerouali, Belhadj Karim
Jazyk: English<br />Portuguese
Rok vydání: 2016
Předmět:
Zdroj: Boletim da Sociedade Paranaense de Matemática, Vol 34, Iss 2, Pp 147-167 (2016)
Druh dokumentu: article
ISSN: 0037-8712
2175-1188
DOI: 10.5269/bspm.v34i2.25229
Popis: We use the Hardy-Sobolev inequality to study existence and non-existence results for a positive solution of the quasilinear elliptic problem -\Delta{p}u − \mu \Delta{q}u = \limda[mp(x)|u|p−2u + \mu mq(x)|u|q−2u] in \Omega driven by nonhomogeneous operator (p, q)-Laplacian with singular weights under the Dirichlet boundary condition. We also prove that in the case where μ > 0 and with 1 < q < p < \infinity the results are completely different from those for the usual eigenvalue for the problem p-Laplacian with singular weight under the Dirichlet boundary condition, which is retrieved when μ = 0. Precisely, we show that when μ > 0 there exists an interval of eigenvalues for our eigenvalue problem.
Databáze: Directory of Open Access Journals