Autor: |
Xiaonan Hu, Huaxin Pang, Jia Liu, Yu Wang, Yifang Lou, Yufeng Zhao |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Frontiers in Psychiatry, Vol 14 (2023) |
Druh dokumentu: |
article |
ISSN: |
1664-0640 |
DOI: |
10.3389/fpsyt.2023.1184188 |
Popis: |
BackgroundDepression is widespread global problem that not only severely impacts individuals’ physical and mental health but also imposes a heavy disease burden on nations and societies. The role of inflammation in the pathogenesis and pathophysiology of depression has received much attention, but the precise relationship between the two remains unclear. This study aims to investigate the correlation between depression and inflammation using a network medicine approach.MethodsWe utilized a degree-preserving approach to identify the large connected component (LCC) of all depression-related proteins in the human interactome. The LCC was deemed as the disease module for depression. To measure the association between depression and other diseases, we calculated the overlap between these disease protein modules using the Sab algorithm. A smaller Sab value indicates a stronger association between diseases. Building on the results of this analysis, we further explored the correlation between inflammation and depression by conducting enrichment and pathway analyses of critical targets. Finally, we used a network proximity approach to calculate drug-disease proximity to predict the efficacy of drugs for the treatment of depression. We calculated and ranked the distances between depression disease modules and 6,100 drugs. The top-ranked drugs were selected to explore their potential for treating depression based on the hypothesis that their antidepressant effects are related to reducing inflammation.ResultsIn the human interactome, all depression-related proteins are clustered into a large connected component (LCC) consisting of 202 proteins and multiple small subgraphs. This indicates that depression-related proteins tend to form clusters within the same network. We used the 202 LCC proteins as the key disease module for depression. Next, we investigated the potential relationships between depression and 299 other diseases. Our analysis identified over 18 diseases that exhibited significant overlap with the depression module. Where SAB = −0.075 for the vascular disease and depressive disorders module, SAB = −0.070 for the gastrointestinal disease and depressive disorders module, and SAB = −0.062 for the endocrine system disease and depressive disorders module. The distance between them SAB |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|