PACIFIC: a lightweight deep-learning classifier of SARS-CoV-2 and co-infecting RNA viruses

Autor: Pablo Acera Mateos, Renzo F. Balboa, Simon Easteal, Eduardo Eyras, Hardip R. Patel
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Scientific Reports, Vol 11, Iss 1, Pp 1-14 (2021)
Druh dokumentu: article
ISSN: 2045-2322
DOI: 10.1038/s41598-021-82043-4
Popis: Abstract Viral co-infections occur in COVID-19 patients, potentially impacting disease progression and severity. However, there is currently no dedicated method to identify viral co-infections in patient RNA-seq data. We developed PACIFIC, a deep-learning algorithm that accurately detects SARS-CoV-2 and other common RNA respiratory viruses from RNA-seq data. Using in silico data, PACIFIC recovers the presence and relative concentrations of viruses with > 99% precision and recall. PACIFIC accurately detects SARS-CoV-2 and other viral infections in 63 independent in vitro cell culture and patient datasets. PACIFIC is an end-to-end tool that enables the systematic monitoring of viral infections in the current global pandemic.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje