Autor: |
Michelle A. Erickson, Miranda L. Wilson, William A. Banks |
Jazyk: |
angličtina |
Rok vydání: |
2020 |
Předmět: |
|
Zdroj: |
Fluids and Barriers of the CNS, Vol 17, Iss 1, Pp 1-16 (2020) |
Druh dokumentu: |
article |
ISSN: |
2045-8118 |
DOI: |
10.1186/s12987-020-00187-3 |
Popis: |
Abstract Neuroimmune communication contributes to both baseline and adaptive physiological functions, as well as disease states. The vascular blood–brain barrier (BBB) and associated cells of the neurovascular unit (NVU) serve as an important interface for immune communication between the brain and periphery through the blood. Immune functions and interactions of the BBB and NVU in this context can be categorized into at least five neuroimmune axes, which include (1) immune modulation of BBB impermeability, (2) immune regulation of BBB transporters, secretions, and other functions, (3) BBB uptake and transport of immunoactive substances, (4) immune cell trafficking, and (5) BBB secretions of immunoactive substances. These axes may act separately or in concert to mediate various aspects of immune signaling at the BBB. Much of what we understand about immune axes has been from work conducted using in vitro BBB models, and recent advances in BBB and NVU modeling highlight the potential of these newer models for improving our understanding of how the brain and immune system communicate. In this review, we discuss how conventional in vitro models of the BBB have improved our understanding of the 5 neuroimmune axes. We further evaluate the existing literature on neuroimmune functions of novel in vitro BBB models, such as those derived from human induced pluripotent stem cells (iPSCs) and discuss their utility in evaluating aspects of neuroimmune communication. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|