On One Point Singular Nonlinear Initial Boundary Value Problem for a Fractional Integro-Differential Equation via Fixed Point Theory

Autor: Said Mesloub, Eman Alhazzani, Hassan Eltayeb Gadain
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Fractal and Fractional, Vol 8, Iss 9, p 526 (2024)
Druh dokumentu: article
ISSN: 2504-3110
DOI: 10.3390/fractalfract8090526
Popis: In this article, we focus on examining the existence, uniqueness, and continuous dependence of solutions on initial data for a specific initial boundary value problem which mainly arises from one-dimensional quasi-static contact problems in nonlinear thermo-elasticity. This problem concerns a fractional nonlinear singular integro-differential equation of order θ∈[0,1]. The primary methodology involves the application of a fixed point theorem coupled with certain a priori bounds. The feasibility of solving this problem is established under the context of data related to a weighted Sobolev space. Furthermore, an additional result related to the regularity of the solution for the formulated problem is also presented.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje