minimal blocking set of size (30) in PG (2,19) plane
Autor: | Amani Al-Salim |
---|---|
Jazyk: | Arabic<br />English |
Rok vydání: | 2012 |
Předmět: | |
Zdroj: | مجلة التربية والعلم, Vol 25, Iss 3, Pp 191-205 (2012) |
Druh dokumentu: | article |
ISSN: | 1812-125X 2664-2530 |
DOI: | 10.33899/edusj.2012.59202 |
Popis: | Abstract A blocking set B in projective plane PG(2,q) is a set of points such that every line in the plane intersect B in at least one point and there exist a line intersect B in only one point, we say that B is minimal if B has no blocking subset. In this research we proved the non_existence of minimal blocking set of size (30) contains 12_secant and not contains 13_secant in PG(2,19). |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |