Nanotechnology‐based CRISPR/Cas9 delivery system for genome editing in cancer treatment

Autor: Shiyao Zhou, Yingjie Li, Qinjie Wu, Changyang Gong
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: MedComm – Biomaterials and Applications, Vol 3, Iss 1, Pp n/a-n/a (2024)
Druh dokumentu: article
ISSN: 2769-643X
DOI: 10.1002/mba2.70
Popis: Abstract The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9 (CRISPR/Cas9) systems initiate a revolution in genome editing, which have a significant potential for treating cancer. A significant amount of research has been conducted regarding genetic modification using CRISPR/Cas9 systems, and 33 clinical trials using ex vivo or in vivo CRISPR/Cas9 gene editing techniques have been carried out to treat cancer. Despite its potential advantages, the main obstacle to convert CRISPR/Cas9 technology into clinical genome editing applications is the safe and efficient transport of genetic material owing to various extra‐ and intracellular biological hurdles. We outline the characteristics of three forms of CRISPR/Cas9 cargos, plasmids, mRNA/sgRNA, and ribonucleoprotein (RNP) complexes in this review. The recent in vivo nanotechnology‐based delivery techniques for these three categories to treat cancer are then reviewed. In the end, we outline the prerequisites for effective and secure in vivo CRISPR/Cas9 delivery in clinical contexts and discuss challenges with current nanocarriers. This review offers a thorough overview of the CRISPR/Cas9 nano‐delivery system for the treatment of cancer, serving as a resource for the design and building of CRISPR/Cas9 delivery systems and offering fresh perspectives on the treatment of tumors.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje