Influence of Superlattice Structure on V-Defect Distribution, External Quantum Efficiency and Electroluminescence for Red InGaN Based µLEDs on Silicon

Autor: Jacob Ewing, Cheyenne Lynsky, Jiaao Zhang, Pavel Shapturenka, Matthew Wong, Jordan Smith, Michael Iza, James S. Speck, Stephen P. DenBaars
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Crystals, Vol 12, Iss 9, p 1216 (2022)
Druh dokumentu: article
ISSN: 2073-4352
DOI: 10.3390/cryst12091216
Popis: Achieving high quantum efficiency in long-wavelength LEDs has posed a significant challenge to the solid-state lighting and display industries. In this article, we use V-defect engineering as a technique to achieve higher efficiencies in red InGaN LEDs on (111) Si through lateral injection. We investigate the effects of superlattice structure on the V-defect distribution, the electroluminescence properties, and the external quantum efficiency. Increasing the relative thickness of In in the InGaN/GaN superlattice and the total superlattice thickness correlate with a reduction of active region defects and increased external quantum efficiencies. The highest measured on-chip EQE was 0.15% and based on Monte-Carlo ray tracing simulations for light extraction we project this would correspond to a flip-chip EQE of ~2.5%.
Databáze: Directory of Open Access Journals