Development of Polyelectrolyte Complexes for the Delivery of Peptide-Based Subunit Vaccines against Group A Streptococcus

Autor: Lili Zhao, Wanli Jin, Jazmina Gonzalez Cruz, Nirmal Marasini, Zeinab G. Khalil, Robert J. Capon, Waleed M. Hussein, Mariusz Skwarczynski, Istvan Toth
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Nanomaterials, Vol 10, Iss 5, p 823 (2020)
Druh dokumentu: article
ISSN: 2079-4991
DOI: 10.3390/nano10050823
Popis: Peptide subunit vaccines hold great potential compared to traditional vaccines. However, peptides alone are poorly immunogenic. Therefore, it is of great importance that a vaccine delivery platform and/or adjuvant that enhances the immunogenicity of peptide antigens is developed. Here, we report the development of two different systems for the delivery of lipopeptide subunit vaccine (LCP-1) against group A streptococcus: polymer-coated liposomes and polyelectrolyte complexes (PECs). First, LCP-1-loaded and alginate/trimethyl chitosan (TMC)-coated liposomes (Lip-1) and LCP-1/alginate/TMC PECs (PEC-1) were examined for their ability to trigger required immune responses in outbred Swiss mice; PEC-1 induced stronger humoral immune responses than Lip-1. To further assess the adjuvanting effect of anionic polymers in PECs, a series of PECs (PEC-1 to PEC-5) were prepared by mixing LCP-1 with different anionic polymers, namely alginate, chondroitin sulfate, dextran, hyaluronic acid, and heparin, then coated with TMC. All produced PECs had similar particle sizes (around 200 nm) and surface charges (around + 30 mV). Notably, PEC-5, which contained heparin, induced higher antigen-specific systemic IgG and mucosal IgA titers than all other PECs. PEC systems, especially when containing heparin and TMC, could function as a promising platform for peptide-based subunit vaccine delivery for intranasal administration.
Databáze: Directory of Open Access Journals