Autor: |
Mahsa Soheil shamaee, Sajad Fathi Hafshejani |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Mathematics Interdisciplinary Research, Vol 9, Iss 3, Pp 237-253 (2024) |
Druh dokumentu: |
article |
ISSN: |
2476-4965 |
DOI: |
10.22052/mir.2023.253279.1426 |
Popis: |
This paper introduces a novel approach to enhance the performance of the stochastic gradient descent (SGD) algorithm by incorporating a modified decay step size based on $\frac{1}{\sqrt{t}}$. The proposed step size integrates a logarithmic term, leading to the selection of smaller values in the final iterations. Our analysis establishes a convergence rate of $O(\frac{\ln T}{\sqrt{T}})$ for smooth non-convex functions without the Polyak-Łojasiewicz condition. To evaluate the effectiveness of our approach, we conducted numerical experiments on image classification tasks using the Fashion-MNIST and CIFAR10 datasets, and the results demonstrate significant improvements in accuracy, with enhancements of $0.5\%$ and $1.4\%$ observed, respectively, compared to the traditional $\frac{1}{\sqrt{t}}$ step size. The source code can be found at https://github.com/Shamaeem/LNSQRTStepSize. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|