Investigation of Analytical Soliton Solutions to the Non-Linear Klein–Gordon Model Using Efficient Techniques

Autor: Miguel Vivas-Cortez, Maham Nageen, Muhammad Abbas, Moataz Alosaimi
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Symmetry, Vol 16, Iss 8, p 1085 (2024)
Druh dokumentu: article
ISSN: 2073-8994
DOI: 10.3390/sym16081085
Popis: Nonlinear distinct models have wide applications in various fields of science and engineering. The present research uses the mapping and generalized Riccati equation mapping methods to address the exact solutions for the nonlinear Klein–Gordon equation. First, the travelling wave transform is used to create an ordinary differential equation form for the nonlinear partial differential equation. This work presents the construction of novel trigonometric, hyperbolic and Jacobi elliptic functions to the nonlinear Klein–Gordon equation using the mapping and generalized Riccati equation mapping methods. In the fields of fluid motion, plasma science, and classical physics the nonlinear Klein–Gordon equation is frequently used to identify of a wide range of interesting physical occurrences. It is considered that the obtained results have not been established in prior study via these methods. To fully evaluate the wave character of the solutions, a number of typical wave profiles are presented, including bell-shaped wave, anti-bell shaped wave, W-shaped wave, continuous periodic wave, while kink wave, smooth kink wave, anti-peakon wave, V-shaped wave and flat wave solitons. Several 2D, 3D and contour plots are produced by taking precise values of parameters in order to improve the physical description of solutions. It is noteworthy that the suggested techniques for solving nonlinear partial differential equations are capable, reliable, and captivating analytical instruments.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje