Autor: |
Maocheng Ji, Jianyong Li, Fangyi Li, Yi Wang, Jia Man, Xiaojie Wang, Yinghua Qiu, Chuanwei Zhang, Sixian Peng, Jianfeng Li |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Materials & Design, Vol 237, Iss , Pp 112567- (2024) |
Druh dokumentu: |
article |
ISSN: |
0264-1275 |
DOI: |
10.1016/j.matdes.2023.112567 |
Popis: |
Excessive biofluid around wounds can cause infection and prevent healing. In this study, an anisotropic quaternized chitosan (QC)/sodium alginate (AL)-based aerogel wound dressing was prepared via a directional freeze-drying technique inspired by the channel structure used for water transport in trees. The aligned channels provided the dressing with self-pumping ability, allowing it to rapidly and completely remove biofluids and absorb biofluids up to 1292.5 % of its own weight. To enhance the strength of the dressing, a double cross-linked network was constructed based on the QC-AL electrostatic attraction and AL-Ca2+ chelation interaction. The axial compressive strength of the double cross-linked dressing reached 207.3 kPa (ε = 50 %). In addition, the dressing exhibited strong conductive properties (conductivity = 13.0 S/m), antioxidant activities [reactive oxygen species (ROS) scavenging ability = 88.0 %], and hemostatic characteristics (blood coagulation index = 1.8 %). The dressing also exhibited powerful antibacterial performance, exhibiting over 98.0 % inhibition of E. coli and S. aureus. Experiments on diabetic mouse models revealed that the dressing considerably promoted wound healing. On day 3, the wound healing rate was 96.7 % faster in the QAC group than in the gauze group. Therefore, the developed dressing may have great potential for chronic wound care. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|